CREATE
  • Technology
    • BIOTECH
    • COMMUNICATIONS
    • COMPUTING
    • IMAGING
    • MATERIALS
    • ROBOTICS
    • SOFTWARE
  • Industry
    • DEFENCE
    • INFRASTRUCTURE
    • INNOVATION
    • MANUFACTURING
    • POLICY
    • PROJECTS
    • TRANSPORT
  • Sustainability
    • ENERGY
    • ENVIRONMENT
    • RESOURCES
  • Community
    • CULTURE
    • PEOPLE
  • Career
    • EDUCATION
    • INSPIRATION
    • LEADERSHIP
    • TRENDS
  • About
    • CONTACT
    • SUBSCRIBE
No Result
View All Result
CREATE
  • Technology
    • BIOTECH
    • COMMUNICATIONS
    • COMPUTING
    • IMAGING
    • MATERIALS
    • ROBOTICS
    • SOFTWARE
  • Industry
    • DEFENCE
    • INFRASTRUCTURE
    • INNOVATION
    • MANUFACTURING
    • POLICY
    • PROJECTS
    • TRANSPORT
  • Sustainability
    • ENERGY
    • ENVIRONMENT
    • RESOURCES
  • Community
    • CULTURE
    • PEOPLE
  • Career
    • EDUCATION
    • INSPIRATION
    • LEADERSHIP
    • TRENDS
  • About
    • CONTACT
    • SUBSCRIBE
No Result
View All Result
CREATE
No Result
View All Result
Home Sustainability Energy

A bit of salt gives lithium batteries just the right kick

create by create
17 October 2017
in Energy
2 min read
0
A bit of salt gives lithium batteries just the right kick

A CSIRO-led team gave lithium batteries a boost by immersing the electrodes in a mixture of ionic liquids and lithium salt.

CSIRO scientists, in collaboration with RMIT University and QUT, have demonstrated that pre-treating a battery’s lithium metal electrodes with an electrolyte salt solution extends the lithium battery life and increases performance and safety.

The simple method is set to accelerate the development of next-gen energy storage solutions and overcome the issue of ‘battery range anxiety’ that is currently a barrier in the electric car industry.

The technology has the potential to improve electric vehicle drive range and battery charge to a point where electric vehicles will soon be competitive with traditional petrol vehicles.

CSIRO battery researcher Dr Adam Best said the pre-treated lithium metal electrodes could potentially outperform other batteries currently on the market.

“Our research has shown by pre-treating lithium metal electrodes, we can create batteries with charge efficiency that greatly exceeds standard lithium batteries,” Best said.

The pre-treatment process involves the immersion of lithium metal electrodes in an electrolyte bath containing a mixture of ionic liquids and lithium salts, prior to a battery being assembled.

Ionic liquids, or room temperature molten salts, are a unique class of material that are clear, colourless, odourless solutions and are non-flammable.

When used in batteries, these materials can prevent the risk of fire and explosion, a known rechargeable battery issue.

The salt bath pre-treatment adds a protective film onto the surface of the electrode that helps stabilise the battery when in operation.

“The pre-treatment reduces the breakdown of electrolytes during operation, which is what determines the battery’s increased performance and lifetime,” Best said.

Lithium batteries that have undergone the process can also spend up to one year on the shelf without loss of performance.

QUT researcher Associate Prof Anthony O’Mullane said the method can be easily adopted by manufacturers.

“The pre-treatment process is readily transferrable to existing manufacturing processes,” O’Mullane said.

The electrolyte salt solutions, to which CSIRO holds patents, come in a range of chemical compositions.

Tags: Create August 2016CSIROenergy storagelithium batteriesbatteries
Previous Post

This startup wants to convert your paper and plastic waste into oil

Next Post

Will 3D printing ever be the king of Australian manufacturing?

create

create

create tells the stories behind the latest trends, innovations and people shaping the engineering profession. Through our magazine, website, enewsletters and social media, we spread the word about all the ways engineers help create the world around us.

Next Post
Will 3D printing ever be the king of Australian manufacturing?

Will 3D printing ever be the king of Australian manufacturing?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

    WANT CREATE DELIVERED DIRECT TO YOUR INBOX? SUBSCRIBE TO OUR NEWSLETTER.

    By subscribing to create you are also subscribing to Engineers Australia content. Please find our Terms and conditions here

    create is brought to you by Engineers Australia, Australia's national body for engineers and the voice of more than 120,000 members. Backing today's problem-solvers so they can shape a better tomorrow.
    • ABOUT US
    • CONTACT US
    • SITEMAP
    • PRIVACY POLICY
    • TERMS
    • SUBSCRIBE

    © 2024 Engineers Australia

    No Result
    View All Result
    • Technology
      • BIOTECH
      • COMMUNICATIONS
      • COMPUTING
      • IMAGING
      • MATERIALS
      • ROBOTICS
      • SOFTWARE
    • Industry
      • DEFENCE
      • INFRASTRUCTURE
      • INNOVATION
      • MANUFACTURING
      • POLICY
      • PROJECTS
      • TRANSPORT
    • Sustainability
      • ENERGY
      • ENVIRONMENT
      • RESOURCES
    • Community
      • CULTURE
      • PEOPLE
    • Career
      • EDUCATION
      • INSPIRATION
      • LEADERSHIP
      • TRENDS
    • About
      • CONTACT
      • SUBSCRIBE
    preload imagepreload image