CREATE
  • Technology
    • BIOTECH
    • COMMUNICATIONS
    • COMPUTING
    • IMAGING
    • MATERIALS
    • ROBOTICS
    • SOFTWARE
  • Industry
    • DEFENCE
    • INFRASTRUCTURE
    • INNOVATION
    • MANUFACTURING
    • POLICY
    • PROJECTS
    • TRANSPORT
  • Sustainability
    • ENERGY
    • ENVIRONMENT
    • RESOURCES
  • Community
    • CULTURE
    • PEOPLE
  • Career
    • EDUCATION
    • INSPIRATION
    • LEADERSHIP
    • TRENDS
  • About
    • CONTACT
    • SUBSCRIBE
No Result
View All Result
CREATE
  • Technology
    • BIOTECH
    • COMMUNICATIONS
    • COMPUTING
    • IMAGING
    • MATERIALS
    • ROBOTICS
    • SOFTWARE
  • Industry
    • DEFENCE
    • INFRASTRUCTURE
    • INNOVATION
    • MANUFACTURING
    • POLICY
    • PROJECTS
    • TRANSPORT
  • Sustainability
    • ENERGY
    • ENVIRONMENT
    • RESOURCES
  • Community
    • CULTURE
    • PEOPLE
  • Career
    • EDUCATION
    • INSPIRATION
    • LEADERSHIP
    • TRENDS
  • About
    • CONTACT
    • SUBSCRIBE
No Result
View All Result
CREATE
No Result
View All Result
Home Technology Materials

Cacti inspire innovative membranes to boost performance of fuel cells

Create Digital by Create Digital
October 17, 2017
in Materials
1 min read
0
Cacti inspire innovative membranes to boost performance of fuel cells

Succulents are more than just darlings of the hipster world – they’re the new muse of CSIRO engineers working to improve the efficiency of fuel cells.

A new cactus-inspired membrane might help keep fuels cells hydrated to significantly boost the performance of fuel cells – and transform the electric vehicle industry.

Developed by scientists from CSIRO and Hanyang University in Korea, the membrane mimics a cactus plant’s ability to thrive by retaining water in harsh and arid environments.

Dr Cara Doherty examining one of the membranes.

“A cactus plant has tiny cracks, called stomatal pores, which open at night when it is cool and humid, and close during the day when the conditions are hot and arid. This helps it retain water,” said CSIRO’s Dr Cara Doherty.

“This membrane works in a similar way. Water is generated by an electrochemical reaction, which is then regulated through nano-cracks within the skin. The cracks widen when exposed to humidifying conditions, and close up when it is drier.

“This means that fuel cells can remain hydrated without the need for bulky external humidifier equipment.”

By using the skin, the researchers managed to boost the efficiency of the fuel cells up to four times, compared to conventional equipment during hot and dry conditions.

The research could have implications for many industries, particularly electric vehicles, since one of the main barriers to the uptake of fuel cell electric vehicles is water and heat management for the fuel cell systems.

Tags: membranesCreate July 2016CSIROfuel cells
Previous Post

Motorcycle design: What happens when you fine tune the forks?

Next Post

Water security for all Australians? One engineer shares how to get there

Create Digital

Create Digital

create tells the stories behind the latest trends, innovations and people shaping the engineering profession. Through our magazine, website, enewsletters and social media, we spread the word about all the ways engineers help create the world around us.

Next Post
Water security for all Australians? One engineer shares how to get there

Water security for all Australians? One engineer shares how to get there

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

    WANT CREATE NEWS DELIVERED DIRECT TO YOUR INBOX? SUBSCRIBE TO OUR NEWSLETTER.

    By subscribing to create you are also subscribing to Engineers Australia content.
    Please find our Terms and conditions here

    Create Digital is powered by Engineers Australia, the trusted voice of the engineering profession. We are the global home for engineering professionals renowned as leaders in shaping a sustainable world.
    • ABOUT US
    • CONTACT US
    • SITEMAP
    • PRIVACY POLICY
    • TERMS
    • SUBSCRIBE

    © 2022 Create.

    No Result
    View All Result
    • Technology
      • BIOTECH
      • COMMUNICATIONS
      • COMPUTING
      • IMAGING
      • MATERIALS
      • ROBOTICS
      • SOFTWARE
    • Industry
      • DEFENCE
      • INFRASTRUCTURE
      • INNOVATION
      • MANUFACTURING
      • POLICY
      • PROJECTS
      • TRANSPORT
    • Sustainability
      • ENERGY
      • ENVIRONMENT
      • RESOURCES
    • Community
      • CULTURE
      • PEOPLE
    • Career
      • EDUCATION
      • INSPIRATION
      • LEADERSHIP
      • TRENDS
    • About
      • CONTACT
      • SUBSCRIBE